\[ a y(x)^3+b y(x)^2+c y(x)+d+y''(x)=0 \] ✓ Mathematica : cpu = 1.32024 (sec), leaf count = 1017
DSolve[d + c*y[x] + b*y[x]^2 + a*y[x]^3 + Derivative[2][y][x] == 0,y[x],x]
\[\text {Solve}\left [\frac {4 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right ) \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]\right )}{\left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right ) \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]\right )}}\right ),\frac {\left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,3\right ]\right ) \left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right )}{\left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,3\right ]\right ) \left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right )}\right ){}^2 \left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]\right ){}^2 \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]\right ) \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]\right ) \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,3\right ]\right ) \left (y(x)-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right )}{\left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]\right ){}^2 \left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,1\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,3\right ]\right ) \left (\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,2\right ]-\text {Root}\left [3 a \text {$\#$1}^4+4 b \text {$\#$1}^3+6 c \text {$\#$1}^2+12 d \text {$\#$1}-6 c_1\& ,4\right ]\right ) \left (-\frac {1}{2} a y(x)^4-\frac {2}{3} b y(x)^3-c y(x)^2-2 d y(x)+c_1\right )}=(x+c_2){}^2,y(x)\right ]\] ✓ Maple : cpu = 0.066 (sec), leaf count = 89
dsolve(diff(diff(y(x),x),x)+d+b*y(x)^2+y(x)*c+a*y(x)^3=0,y(x))
\[\int _{}^{y \left (x \right )}-\frac {6}{\sqrt {-18 a \,\textit {\_a}^{4}-24 b \,\textit {\_a}^{3}-36 \textit {\_a}^{2} c -72 \textit {\_a} d +36 c_{1}}}d \textit {\_a} -x -c_{2} = 0\]