2.1503   ODE No. 1503

\[ \left (x^2+1\right ) y^{(3)}(x)+\frac {1}{x^2}+8 x y''(x)+10 y'(x)-2 \log (x)-3=0 \] Mathematica : cpu = 0.324347 (sec), leaf count = 258

DSolve[-3 + x^(-2) - 2*Log[x] + 10*Derivative[1][y][x] + 8*x*Derivative[2][y][x] + (1 + x^2)*Derivative[3][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {1}{225} \left (-3 (17+75 c_2) \arctan (x)-\frac {51 x}{x^2+1}-\frac {34 x}{\left (x^2+1\right )^2}-\frac {225 c_2 x}{x^2+1}-\frac {150 c_2 x}{\left (x^2+1\right )^2}-\frac {225 c_1}{4 \left (x^2+1\right )^2}-9 x+\frac {47}{x-i}+\frac {47}{x+i}+45 x \log (x)+60 i \log (-x+i)+\frac {171}{2} i \log (1-i x)-\frac {171}{2} i \log (1+i x)+\frac {30 \log (x)}{x-i}+\frac {30 \log (x)}{x+i}-\frac {30 i \log (x)}{(x-i)^2}+\frac {30 i \log (x)}{(x+i)^2}-60 i \log (x+i)+\frac {75 c_2}{x-i}+\frac {75 c_2}{x+i}+\frac {225}{2} i c_2 \log (1-i x)-\frac {225}{2} i c_2 \log (1+i x)\right )+c_3\right \}\right \}\] Maple : cpu = 0.028 (sec), leaf count = 67

dsolve((x^2+1)*diff(diff(diff(y(x),x),x),x)+8*x*diff(diff(y(x),x),x)+10*diff(y(x),x)-3+1/x^2-2*ln(x)=0,y(x))
 

\[y \left (x \right ) = \frac {\left (45 x^{5}+150 x^{3}+225 x \right ) \ln \left (x \right )-9 x^{5}+225 c_{1} x^{4}+\left (225 c_{2}-50\right ) x^{3}+450 x^{2} c_{1}+\left (675 c_{2}-225\right ) x +225 c_{3}}{225 \left (x^{2}+1\right )^{2}}\]