2.1172   ODE No. 1172

\[ a y(x)+x^2 y''(x)+2 (x-1) y'(x)=0 \] Mathematica : cpu = 0.0434489 (sec), leaf count = 158

DSolve[a*y[x] + 2*(-1 + x)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to 2^{\frac {1}{2} \left (1-\sqrt {1-4 a}\right )} c_1 \left (\frac {1}{x}\right )^{\frac {1}{2} \left (1-\sqrt {1-4 a}\right )} \operatorname {Hypergeometric1F1}\left (\frac {1}{2}-\frac {1}{2} \sqrt {1-4 a},1-\sqrt {1-4 a},-\frac {2}{x}\right )+2^{\frac {1}{2} \left (\sqrt {1-4 a}+1\right )} c_2 \left (\frac {1}{x}\right )^{\frac {1}{2} \left (\sqrt {1-4 a}+1\right )} \operatorname {Hypergeometric1F1}\left (\frac {1}{2} \sqrt {1-4 a}+\frac {1}{2},\sqrt {1-4 a}+1,-\frac {2}{x}\right )\right \}\right \}\] Maple : cpu = 0.046 (sec), leaf count = 47

dsolve(x^2*diff(diff(y(x),x),x)+2*(x-1)*diff(y(x),x)+a*y(x)=0,y(x))
 

\[y \left (x \right ) = {\mathrm e}^{-\frac {1}{x}} \sqrt {\frac {1}{x}}\, \left (\operatorname {BesselK}\left (\frac {\sqrt {1-4 a}}{2}, \frac {1}{x}\right ) c_{2}+\operatorname {BesselI}\left (\frac {\sqrt {1-4 a}}{2}, \frac {1}{x}\right ) c_{1}\right )\]