2.117   ODE No. 117

\[ x y'(x)+x \left (-e^{\frac {y(x)}{x}}\right )-y(x)-x=0 \] Mathematica : cpu = 0.123731 (sec), leaf count = 28

DSolve[-x - E^(y[x]/x)*x - y[x] + x*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to x \log \left (\frac {1}{2} \left (-1+\tanh \left (\frac {1}{2} (-\log (x)-c_1)\right )\right )\right )\right \}\right \}\] Maple : cpu = 0.076 (sec), leaf count = 20

dsolve(x*diff(y(x),x)-x*exp(y(x)/x)-y(x)-x = 0,y(x))
 

\[y \left (x \right ) = \left (\ln \left (-\frac {x}{-1+x \,{\mathrm e}^{c_{1}}}\right )+c_{1}\right ) x\]