\[ 4 x y'(x)^3-6 y(x) y'(x)^2+3 y(x)-x=0 \] ✓ Mathematica : cpu = 0.049745 (sec), leaf count = 114
\[\left \{\left \{y(x)\to \frac {-\sqrt {2} \sqrt {c_1 x^3+3 c_1{}^2 x^2+3 c_1{}^3 x+c_1{}^4}-c_1{}^2}{3 c_1}\right \},\left \{y(x)\to \frac {\sqrt {2} \sqrt {c_1 x^3+3 c_1{}^2 x^2+3 c_1{}^3 x+c_1{}^4}-c_1{}^2}{3 c_1}\right \}\right \}\] ✓ Maple : cpu = 0.049 (sec), leaf count = 84
\[ \left \{ y \left ( x \right ) =x,y \left ( x \right ) =-{\frac { \left ( 1+\sqrt {3} \right ) x}{2}},y \left ( x \right ) ={\frac { \left ( \sqrt {3}-1 \right ) x}{2}},y \left ( x \right ) ={\frac {1}{3\,{\it \_C1}} \left ( -\sqrt {2} \left ( {\it \_C1}+x \right ) \sqrt {{\it \_C1}\, \left ( {\it \_C1}+x \right ) }-{{\it \_C1}}^{2} \right ) },y \left ( x \right ) ={\frac {1}{3\,{\it \_C1}} \left ( \sqrt {2} \left ( {\it \_C1}+x \right ) \sqrt {{\it \_C1}\, \left ( {\it \_C1}+x \right ) }-{{\it \_C1}}^{2} \right ) } \right \} \]