\[ x^n y(x)^m \left (a x y'(x)+b y(x)\right )+\alpha x y'(x)+\beta y(x)=0 \] ✓ Mathematica : cpu = 0.671128 (sec), leaf count = 102
\[\text {Solve}\left [\frac {m \left ((a \beta -\alpha b) \log \left (x^n y(x)^m (b m-a n)-\alpha n+\beta m\right )+\beta \log (x) (b m-a n)\right )}{(b m-a n) (\beta m-\alpha n)}+\frac {\alpha m \log (\beta m y(x)-\alpha n y(x))}{\beta m-\alpha n}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.269 (sec), leaf count = 71
\[ \left \{ \left ( \left ( y \left ( x \right ) \right ) ^{m} \right ) ^{\alpha \, \left ( an-bm \right ) } \left ( {x}^{n} \left ( an-bm \right ) \left ( y \left ( x \right ) \right ) ^{m}-\beta \,m+\alpha \,n \right ) ^{-a\beta \,m+bm\alpha }{x}^{\beta \,m \left ( an-bm \right ) }-{\it \_C1}=0 \right \} \]