\[ -y(x) \left (a b+b^2 x^2\right )+a y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.116283 (sec), leaf count = 43
\[\left \{\left \{y(x)\to c_2 e^{b x} \int _1^xe^{\frac {a}{K[1]}-2 b K[1]}dK[1]+c_1 e^{b x}\right \}\right \}\] ✓ Maple : cpu = 0.174 (sec), leaf count = 178
\[ \left \{ y \left ( x \right ) =\sqrt {x} \left ( {{\rm e}^{bx}}{\it HeunD} \left ( -4\,\sqrt {2}\sqrt {ab},-1-4\,\sqrt {2}\sqrt {ab},8\,\sqrt {2}\sqrt {ab},-4\,\sqrt {2}\sqrt {ab}+1,{1 \left ( \sqrt {2}\sqrt {ab}x-a \right ) \left ( \sqrt {2}\sqrt {ab}x+a \right ) ^{-1}} \right ) {\it \_C2}+{\it HeunD} \left ( 4\,\sqrt {2}\sqrt {ab},-1-4\,\sqrt {2}\sqrt {ab},8\,\sqrt {2}\sqrt {ab},-4\,\sqrt {2}\sqrt {ab}+1,{1 \left ( \sqrt {2}\sqrt {ab}x-a \right ) \left ( \sqrt {2}\sqrt {ab}x+a \right ) ^{-1}} \right ) {{\rm e}^{{\frac {-b{x}^{2}+a}{x}}}}{\it \_C1} \right ) \right \} \]