\[ (a x+b) y'(x)+y(x) (c x+d)+y''(x)=0 \] ✓ Mathematica : cpu = 0.0332217 (sec), leaf count = 172
\[\left \{\left \{y(x)\to c_1 e^{\frac {c x}{a}-\frac {a x^2}{2}-b x} H_{\frac {-a^3+d a^2-b c a+c^2}{a^3}}\left (\frac {a b-2 c}{\sqrt {2} a^{3/2}}+\frac {\sqrt {a} x}{\sqrt {2}}\right )+c_2 e^{\frac {c x}{a}-\frac {a x^2}{2}-b x} \, _1F_1\left (-\frac {-a^3+d a^2-b c a+c^2}{2 a^3};\frac {1}{2};\left (\frac {a b-2 c}{\sqrt {2} a^{3/2}}+\frac {\sqrt {a} x}{\sqrt {2}}\right )^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.034 (sec), leaf count = 98
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {cx}{a}}}} \left ( {{\sl U}\left ({\frac {d{a}^{2}-abc+{c}^{2}}{2\,{a}^{3}}},\,{\frac {1}{2}},\,-{\frac { \left ( {a}^{2}x+ab-2\,c \right ) ^{2}}{2\,{a}^{3}}}\right )}{\it \_C2}+{{\sl M}\left ({\frac {d{a}^{2}-abc+{c}^{2}}{2\,{a}^{3}}},\,{\frac {1}{2}},\,-{\frac { \left ( {a}^{2}x+ab-2\,c \right ) ^{2}}{2\,{a}^{3}}}\right )}{\it \_C1} \right ) \right \} \]