\[ y'(x)=\frac {y(x)}{x \log (x)}-x^3 \left (-y(x)^2-2 y(x) \log (x)-\log ^2(x)\right ) \] ✓ Mathematica : cpu = 0.244527 (sec), leaf count = 198
\[\left \{\left \{y(x)\to -\frac {\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1) \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)}+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)} \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )}{x^3 \left (\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.036 (sec), leaf count = 43
\[\left \{y \left (x \right ) = -\frac {\left (4 x^{4} \ln \left (x \right )-x^{4}+8 c_{1}+16\right ) \ln \left (x \right )}{4 x^{4} \ln \left (x \right )-x^{4}+8 c_{1}}\right \}\]