\[ y'(x)=\frac {y(x)}{x}-F(x) \left (-x^2-2 x y(x)+y(x)^2\right ) \] ✓ Mathematica : cpu = 0.232251 (sec), leaf count = 107
\[\left \{\left \{y(x)\to -\frac {x \left (-\exp \left (2 \sqrt {2} \left (\int _1^x-F(K[1]) K[1]dK[1]+c_1\right )\right )+\sqrt {2} \exp \left (2 \sqrt {2} \left (\int _1^x-F(K[1]) K[1]dK[1]+c_1\right )\right )-1-\sqrt {2}\right )}{1+\exp \left (2 \sqrt {2} \left (\int _1^x-F(K[1]) K[1]dK[1]+c_1\right )\right )}\right \}\right \}\] ✓ Maple : cpu = 0.042 (sec), leaf count = 29
\[\left \{y \left (x \right ) = \frac {\left (2 \tanh \left (\left (c_{1}+\int x F \left (x \right )d x \right ) \sqrt {2}\right )+\sqrt {2}\right ) \sqrt {2}\, x}{2}\right \}\]