\[ y'(x)=\frac {y(x)^2 \left (x^4 y(x)+2 x^2 y(x)+2 x^2-2 y(x)\right )}{x^3 \left (x^2 y(x)+x^2-y(x)\right )} \] ✓ Mathematica : cpu = 0.21048 (sec), leaf count = 135
\[\left \{\left \{y(x)\to \frac {x^5}{-x^3 \left (x^2-1\right )+\frac {\sqrt {\left (x^2-1\right )^2 x+x^5 \left (-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )+c_1\right )}}{\sqrt {\frac {1}{x^5}}}}\right \},\left \{y(x)\to -\frac {x^5}{\left (x^2-1\right ) x^3+\frac {\sqrt {\left (x^2-1\right )^2 x+x^5 \left (-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )+c_1\right )}}{\sqrt {\frac {1}{x^5}}}}\right \}\right \}\] ✓ Maple : cpu = 0.065 (sec), leaf count = 56
\[\left \{y \left (x \right ) = \frac {x^{2}}{\sqrt {c_{1}-2 \ln \left (x \right )}\, x^{2}-x^{2}+1}, y \left (x \right ) = -\frac {x^{2}}{\sqrt {c_{1}-2 \ln \left (x \right )}\, x^{2}+x^{2}-1}\right \}\]