\[ y'(x)=-\frac {2 a}{128 a^4 x^3-96 a^3 x^2 y(x)^2-32 a^3 x^2+24 a^2 x y(x)^4+16 a^2 x y(x)^2-2 a y(x)^6-2 a y(x)^4-2 a-y(x)} \] ✓ Mathematica : cpu = 0.525248 (sec), leaf count = 131
\[\text {Solve}\left [\frac {\text {RootSum}\left [-64 \text {$\#$1}^3 a^3+48 \text {$\#$1}^2 a^2 y(x)^2+16 \text {$\#$1}^2 a^2-12 \text {$\#$1} a y(x)^4-8 \text {$\#$1} a y(x)^2+y(x)^6+y(x)^4+1\& ,\frac {\log (x-\text {$\#$1})}{48 \text {$\#$1}^2 a^2-24 \text {$\#$1} a y(x)^2-8 \text {$\#$1} a+3 y(x)^4+2 y(x)^2}\& \right ]}{8 a^2}+\frac {y(x)}{2 a}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.176 (sec), leaf count = 41
\[\left \{-c_{1}+\frac {y \left (x \right )}{2 a}+\frac {\int _{}^{-4 a x +y \left (x \right )^{2}}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a}}{8 a^{2}} = 0\right \}\]