\[ y'(x)=-\frac {y(x)^2 \left (x^2 y(x)-2 x y(x)+y(x)-2 x\right )}{2 x (x y(x)-2 y(x)-2)} \] ✓ Mathematica : cpu = 0.203807 (sec), leaf count = 135
\[\left \{\left \{y(x)\to -\frac {4 x}{-2 (x-2) x+\frac {2 \sqrt {-x (x-2)^2-4 x \left (-2 \left (\frac {x^2}{8}-\frac {x}{2}+\frac {\log (x)}{4}\right )+c_1\right )}}{\sqrt {-\frac {1}{x}}}}\right \},\left \{y(x)\to \frac {4 x}{2 (x-2) x+\frac {2 \sqrt {-x (x-2)^2-4 x \left (-2 \left (\frac {x^2}{8}-\frac {x}{2}+\frac {\log (x)}{4}\right )+c_1\right )}}{\sqrt {-\frac {1}{x}}}}\right \}\right \}\] ✓ Maple : cpu = 0.056 (sec), leaf count = 41
\[\left \{y \left (x \right ) = -\frac {4}{-2 x +\sqrt {c_{1}-8 \ln \left (x \right )}+4}, y \left (x \right ) = \frac {4}{2 x +\sqrt {c_{1}-8 \ln \left (x \right )}-4}\right \}\]