\[ y'(x)=\frac {e^{3 x^2} x (y(x)+3)^3}{81 \left (e^{\frac {3 x^2}{2}} y(x)+3 e^{\frac {3 x^2}{2}}+3 y(x)\right )} \] ✓ Mathematica : cpu = 12.8585 (sec), leaf count = 99
\[\text {Solve}\left [\frac {1}{186} \left (\left (31+3 \sqrt {93}\right ) \log \left (9 \left (9+\sqrt {93}\right ) y(x)-2 e^{\frac {3 x^2}{2}} (y(x)+3)\right )+\left (31-3 \sqrt {93}\right ) \log \left (2 e^{\frac {3 x^2}{2}} (y(x)+3)+9 \left (\sqrt {93}-9\right ) y(x)\right )\right )-\frac {1}{3} \log (3 y(x)+9)=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.975 (sec), leaf count = 168
\[\left \{15 x^{2}-c_{1}-\frac {30 \sqrt {93}\, \arctanh \left (\frac {\left (29 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y \left (x \right )+87 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 y \left (x \right )\right ) \sqrt {93}}{\left (279 y \left (x \right )+837\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}+837 y \left (x \right )}\right )}{31}+5 \ln \left (\frac {-24300 y \left (x \right )^{2}+100 \left (y \left (x \right )+3\right )^{2} {\mathrm e}^{3 x^{2}}+\left (-8100 y \left (x \right )^{2}-24300 y \left (x \right )\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{189 \left (\left (y \left (x \right )+3\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}+3 y \left (x \right )\right )^{2}}\right )-10 \ln \left (\frac {10 \left (y \left (x \right )+3\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{9 \left ({\mathrm e}^{\frac {3 x^{2}}{2}} y \left (x \right )+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 y \left (x \right )\right )}\right ) = 0\right \}\]