\[ y'(x)=-\frac {1}{-e^{y(x)} y(x) \text {$\_$F1}(y(x)-\log (x))-x} \] ✓ Mathematica : cpu = 0.321982 (sec), leaf count = 59
\[\text {Solve}\left [-\int _1^{y(x)-\log (x)}\frac {K[1] \text {$\_$F1}(K[1])+e^{-K[1]}}{\text {$\_$F1}(K[1])}dK[1]-y(x) \log (x)+\frac {\log ^2(x)}{2}=-c_1,y(x)\right ]\] ✓ Maple : cpu = 0.522 (sec), leaf count = 43
\[\left \{\frac {\ln \left (x \right )^{2}}{2}-\ln \left (x \right ) y \left (x \right )+c_{1}-\left (\int _{}^{-\ln \left (x \right )+y \left (x \right )}\frac {\textit {\_a} \textit {\_F1} \left (\textit {\_a} \right )+{\mathrm e}^{-\textit {\_a}}}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} \right ) = 0\right \}\]