\[ y'(x)=-\frac {i x \left (x^8+18 x^4 y(x)^2+54 i x^2+81 y(x)^4\right )}{243 y(x)} \] ✓ Mathematica : cpu = 0.103573 (sec), leaf count = 498
\[\left \{\left \{y(x)\to -\frac {\sqrt {\left (Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right ) \left ((1+i) \sqrt {6} x^3 \left (Y_{\frac {4}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {4}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )+\left (-\frac {x^6}{3}-9 i\right ) Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )-9 c_1 \left (\frac {x^6}{27}+i\right ) J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )}}{\sqrt {3} x \left (Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )}\right \},\left \{y(x)\to \frac {\sqrt {\left (Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right ) \left ((1+i) \sqrt {6} x^3 \left (Y_{\frac {4}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {4}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )+\left (-\frac {x^6}{3}-9 i\right ) Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )-9 c_1 \left (\frac {x^6}{27}+i\right ) J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )}}{\sqrt {3} x \left (Y_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )+c_1 J_{\frac {1}{3}}\left (\left (\frac {2}{9}-\frac {2 i}{9}\right ) \sqrt {\frac {2}{3}} x^3\right )\right )}\right \}\right \}\] ✓ Maple : cpu = 0.589 (sec), leaf count = 305
\[\left \{y \left (x \right ) = -\frac {\sqrt {3}\, \sqrt {\left (\left (1+i\right ) \left (c_{1} \BesselJ \left (\frac {4}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {4}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) \sqrt {6}\, x^{3}-9 c_{1} \left (\frac {x^{6}}{27}+i\right ) \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\left (-\frac {x^{6}}{3}-9 i\right ) \BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) \left (c_{1} \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right )}}{3 \left (c_{1} \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) x}, y \left (x \right ) = \frac {\sqrt {3}\, \sqrt {\left (\left (1+i\right ) \left (c_{1} \BesselJ \left (\frac {4}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {4}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) \sqrt {6}\, x^{3}-9 c_{1} \left (\frac {x^{6}}{27}+i\right ) \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\left (-\frac {x^{6}}{3}-9 i\right ) \BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) \left (c_{1} \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right )}}{3 \left (c_{1} \BesselJ \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )+\BesselY \left (\frac {1}{3}, \left (\frac {2}{27}-\frac {2 i}{27}\right ) \sqrt {6}\, x^{3}\right )\right ) x}\right \}\]