\[ y'(x)=\frac {y(x) \left (x^3-x \log (y(x))-\log (y(x))\right )}{x+1} \] ✓ Mathematica : cpu = 0.282453 (sec), leaf count = 37
\[\left \{\left \{y(x)\to \exp \left (-e^{-x-1} \text {Ei}(x+1)+x^2-3 x-c_1 e^{-x}+4\right )\right \}\right \}\] ✓ Maple : cpu = 0.481 (sec), leaf count = 39
\[\{y \left (x \right ) = {\mathrm e}^{4} {\mathrm e}^{x^{2}} {\mathrm e}^{c_{1} {\mathrm e}^{-x}} {\mathrm e}^{{\mathrm e}^{-1} \Ei \left (1, -x -1\right ) {\mathrm e}^{-x}} {\mathrm e}^{-3 x}\}\]