\[ y'(x)=\frac {x^6 \sqrt {4 x^2 y(x)+1}+\frac {x}{2}+\frac {1}{2}}{x^3 (x+1)} \] ✓ Mathematica : cpu = 0.533355 (sec), leaf count = 144
\[\left \{\left \{y(x)\to \frac {9 x^{10}-24 x^9+52 x^8-120 x^7+132 x^6+72 x^6 \log (x+1)-72 c_1 x^6-144 x^5-96 x^5 \log (x+1)+96 c_1 x^5+144 x^4+144 x^4 \log (x+1)-144 c_1 x^4-288 x^3 \log (x+1)+288 c_1 x^3+144 x^2 \log ^2(x+1)+144 c_1{}^2 x^2-288 c_1 x^2 \log (x+1)-36}{144 x^2}\right \}\right \}\] ✓ Maple : cpu = 0.643 (sec), leaf count = 43
\[\left \{\frac {x^{4}}{2}-\frac {2 x^{3}}{3}+x^{2}+c_{1}-2 x +2 \ln \left (x +1\right )-\frac {\sqrt {4 x^{2} y \left (x \right )+1}}{x} = 0\right \}\]