\[ y'(x)=y(x) (\log (x)-\log (\log (y(x))))^2 \] ✓ Mathematica : cpu = 0.192856 (sec), leaf count = 53
\[\text {Solve}\left [\int _1^{y(x)}\frac {1}{K[1] \left (x \log ^2(x)-2 x \log (\log (K[1])) \log (x)+x \log ^2(\log (K[1]))-\log (K[1])\right )}dK[1]=\log (x)+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.247 (sec), leaf count = 50
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}\frac {1}{\left (x \ln \left (x \right )^{2}-2 x \ln \left (x \right ) \ln \left (\ln \left (\textit {\_a} \right )\right )+x \ln \left (\ln \left (\textit {\_a} \right )\right )^{2}-\ln \left (\textit {\_a} \right )\right ) \textit {\_a}}d \textit {\_a} -\ln \left (x \right ) = 0\right \}\]