\[ y'(x)=\frac {e^x}{e^{-x} y(x)+1} \] ✓ Mathematica : cpu = 0.243452 (sec), leaf count = 65
\[\text {Solve}\left [\frac {1}{2} \log \left (-e^{-2 x} y(x)^2-e^{-x} y(x)+1\right )+x=\frac {\tanh ^{-1}\left (\frac {y(x)+3 e^x}{\sqrt {5} \left (y(x)+e^x\right )}\right )}{\sqrt {5}}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.331 (sec), leaf count = 54
\[\left \{-c_{1}+x -\frac {\sqrt {5}\, \arctanh \left (\frac {2 \sqrt {5}\, {\mathrm e}^{-x} y \left (x \right )}{5}+\frac {\sqrt {5}}{5}\right )}{5}+\frac {\ln \left ({\mathrm e}^{-2 x} y \left (x \right )^{2}+{\mathrm e}^{-x} y \left (x \right )-1\right )}{2} = 0\right \}\]