\[ a \left (-\sqrt {y(x)}\right )-b x+y'(x)=0 \] ✓ Mathematica : cpu = 0.381228 (sec), leaf count = 118
\[\text {Solve}\left [\frac {a^2 \left (-\log \left (a^2 \left (\sqrt {\frac {a^2 y(x)}{b^2 x^2}}+1\right )-\frac {2 a^2 y(x)}{b x^2}\right )-\frac {2 a \tanh ^{-1}\left (\frac {a \left (1-\frac {4 b \sqrt {\frac {a^2 y(x)}{b^2 x^2}}}{a^2}\right )}{\sqrt {a^2+8 b}}\right )}{\sqrt {a^2+8 b}}\right )}{2 b}=\frac {a^2 \log (x)}{b}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.077 (sec), leaf count = 68
\[\left \{\frac {a \arctanh \left (\frac {2 b x +a \sqrt {y \left (x \right )}}{\sqrt {\left (a^{2}+8 b \right ) y \left (x \right )}}\right ) \sqrt {y \left (x \right )}}{\sqrt {\left (a^{2}+8 b \right ) y \left (x \right )}}+c_{1}-\frac {\ln \left (b \,x^{2}+a x \sqrt {y \left (x \right )}-2 y \left (x \right )\right )}{2} = 0\right \}\]