\[ \left (x^2 y(x)^2-x^2+y(x)^4\right ) y'(x)^2+2 x y(x) y'(x)-y(x)^2=0 \] ✓ Mathematica : cpu = 2.6248 (sec), leaf count = 88
\[\text {Solve}\left [\frac {\sqrt {x^2+y(x)^2} y(x) \left (\log \left (\frac {x}{\sqrt {x^2+y(x)^2}}+1\right )-\log \left (1-\frac {x}{\sqrt {x^2+y(x)^2}}\right )\right )}{2 x^2 \sqrt {\frac {y(x)^2 \left (x^2+y(x)^2\right )}{x^4}}}+y(x)=c_1,y(x)\right ]\] ✓ Maple : cpu = 2.451 (sec), leaf count = 60
\[\{y \left (x \right ) = i x, y \left (x \right ) = -i x, y \left (x \right ) = c_{1}-\arctanh \left (\RootOf \left (c_{1}^{2} \textit {\_Z}^{2}-2 c_{1} \textit {\_Z}^{2} \arctanh \left (\textit {\_Z} \right )+\textit {\_Z}^{2} x^{2}+\textit {\_Z}^{2} \arctanh \left (\textit {\_Z} \right )^{2}-x^{2}\right )\right )\}\]