\[ (3 y(x)-2) y'(x)^2+4 y(x)-4=0 \] ✓ Mathematica : cpu = 0.133399 (sec), leaf count = 155
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\sqrt {3 (\text {$\#$1}-1)+1} \sqrt {1-\text {$\#$1}}-\frac {\sqrt {1-\text {$\#$1}} \sinh ^{-1}\left (\sqrt {3} \sqrt {\text {$\#$1}-1}\right )}{\sqrt {3} \sqrt {\text {$\#$1}-1}}\& \right ][-2 x+c_1]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\sqrt {3 (\text {$\#$1}-1)+1} \sqrt {1-\text {$\#$1}}-\frac {\sqrt {1-\text {$\#$1}} \sinh ^{-1}\left (\sqrt {3} \sqrt {\text {$\#$1}-1}\right )}{\sqrt {3} \sqrt {\text {$\#$1}-1}}\& \right ][2 x+c_1]\right \}\right \}\] ✓ Maple : cpu = 0.388 (sec), leaf count = 99
\[\left \{y \left (x \right ) = 1, y \left (x \right ) = \frac {\sin \left (\RootOf \left (48 c_{1}^{2}-8 c_{1} \sqrt {3}\, \textit {\_Z} -96 c_{1} x +\textit {\_Z}^{2}+8 \sqrt {3}\, \textit {\_Z} x +48 x^{2}-\left (\cos ^{2}\left (\textit {\_Z} \right )\right )\right )\right )}{6}+\frac {5}{6}, y \left (x \right ) = \frac {\sin \left (\RootOf \left (48 c_{1}^{2}+8 c_{1} \sqrt {3}\, \textit {\_Z} -96 c_{1} x +\textit {\_Z}^{2}-8 \sqrt {3}\, \textit {\_Z} x +48 x^{2}-\left (\cos ^{2}\left (\textit {\_Z} \right )\right )\right )\right )}{6}+\frac {5}{6}\right \}\]