\[ y(x) y'(x)^2+2 x y'(x)-9 y(x)=0 \] ✓ Mathematica : cpu = 0.0584254 (sec), leaf count = 107
\[\left \{\text {Solve}\left [\int \frac {y(x)}{x \left (\frac {y(x)^2}{x^2}-\sqrt {\frac {9 y(x)^2}{x^2}+1}+1\right )}d\frac {y(x)}{x}=-\log (x)+c_1,y(x)\right ],\text {Solve}\left [\int \frac {y(x)}{x \left (\frac {y(x)^2}{x^2}+\sqrt {\frac {9 y(x)^2}{x^2}+1}+1\right )}d\frac {y(x)}{x}=-\log (x)+c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.085 (sec), leaf count = 210
\[\left \{-\frac {c_{1} \left (x -\sqrt {x^{2}+9 y \left (x \right )^{2}}\right ) \left (\frac {-x +\sqrt {x^{2}+9 y \left (x \right )^{2}}}{y \left (x \right )}\right )^{\frac {2}{7}} x}{\left (\frac {2 x^{2}+2 y \left (x \right )^{2}-2 \sqrt {x^{2}+9 y \left (x \right )^{2}}\, x}{y \left (x \right )^{2}}\right )^{\frac {1}{7}} \left (2 x^{2}+2 y \left (x \right )^{2}-2 \sqrt {x^{2}+9 y \left (x \right )^{2}}\, x \right )}+x = 0, \frac {c_{1} \left (x +\sqrt {x^{2}+9 y \left (x \right )^{2}}\right ) \left (\frac {-x -\sqrt {x^{2}+9 y \left (x \right )^{2}}}{y \left (x \right )}\right )^{\frac {2}{7}} x}{\left (x^{2}+y \left (x \right )^{2}+\sqrt {x^{2}+9 y \left (x \right )^{2}}\, x \right ) \left (\frac {x^{2}+y \left (x \right )^{2}+\sqrt {x^{2}+9 y \left (x \right )^{2}}\, x}{y \left (x \right )^{2}}\right )^{\frac {1}{7}}}+x = 0\right \}\]