\[ x y'(x)^2+(y(x)-3 x) y'(x)+y(x)=0 \] ✓ Mathematica : cpu = 2.46506 (sec), leaf count = 383
\[\left \{\text {Solve}\left [\frac {1}{8} \left (-\sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}} \left (\frac {y(x)}{x}-1\right )+\sqrt {\frac {y(x)}{x}-9} \sqrt {\frac {y(x)}{x}-1}-3 \log \left (\frac {y(x)}{x}\right )-\frac {10 \sqrt {\frac {y(x)}{x}-9} \sin ^{-1}\left (\frac {\sqrt {9-\frac {y(x)}{x}}}{2 \sqrt {2}}\right )}{\sqrt {9-\frac {y(x)}{x}}}+6 \tanh ^{-1}\left (\frac {1}{3} \sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}}\right )+8 \tanh ^{-1}\left (\sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}}\right )\right )=\frac {\log (x)}{2}+c_1,y(x)\right ],\text {Solve}\left [\frac {1}{8} \left (-\sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}} \left (\frac {y(x)}{x}-1\right )+\sqrt {\frac {y(x)}{x}-9} \sqrt {\frac {y(x)}{x}-1}+3 \log \left (\frac {y(x)}{x}\right )-\frac {10 \sqrt {\frac {y(x)}{x}-9} \sin ^{-1}\left (\frac {\sqrt {9-\frac {y(x)}{x}}}{2 \sqrt {2}}\right )}{\sqrt {9-\frac {y(x)}{x}}}+6 \tanh ^{-1}\left (\frac {1}{3} \sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}}\right )+8 \tanh ^{-1}\left (\sqrt {\frac {\frac {y(x)}{x}-9}{\frac {y(x)}{x}-1}}\right )\right )=-\frac {\log (x)}{2}+c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.075 (sec), leaf count = 136
\[\left \{x -\frac {c_{1} \left (5 x -y \left (x \right )+\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}\right )}{\left (\frac {3 x -y \left (x \right )+\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}}{x}\right )^{\frac {3}{2}} x} = 0, x +\frac {c_{1} \left (-5 x +y \left (x \right )+\sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}\right )}{\left (\frac {6 x -2 y \left (x \right )-2 \sqrt {9 x^{2}-10 x y \left (x \right )+y \left (x \right )^{2}}}{x}\right )^{\frac {3}{2}} x} = 0, y \left (x \right ) = x\right \}\]