\[ -2 x^3 y(x)^2 y'(x)-4 x^2 y(x)^3+y'(x)^2=0 \] ✓ Mathematica : cpu = 0.751131 (sec), leaf count = 143
\[\left \{\text {Solve}\left [-\frac {x \sqrt {x^4 y(x)+4} y(x)^{3/2} \sinh ^{-1}\left (\frac {1}{2} x^2 \sqrt {y(x)}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))=c_1,y(x)\right ],\text {Solve}\left [\frac {x y(x)^{3/2} \sqrt {x^4 y(x)+4} \sinh ^{-1}\left (\frac {1}{2} x^2 \sqrt {y(x)}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.343 (sec), leaf count = 128
\[\left \{y \left (x \right ) = \frac {-2 \sqrt {2}\, x^{2}-2 c_{1}}{2 c_{1} x^{4}-c_{1}^{3}}, y \left (x \right ) = \frac {2 \sqrt {2}\, x^{2}-2 c_{1}}{2 c_{1} x^{4}-c_{1}^{3}}, y \left (x \right ) = \frac {\left (c_{1} \sqrt {2}\, x^{2}-2\right ) c_{1}^{2}}{2 c_{1}^{2} x^{4}-4}, y \left (x \right ) = -\frac {4}{x^{4}}, y \left (x \right ) = -\frac {\left (c_{1} \sqrt {2}\, x^{2}+2\right ) c_{1}^{2}}{2 c_{1}^{2} x^{4}-4}\right \}\]