\[ a x y'(x)-b x^2-c+y'(x)^2=0 \] ✓ Mathematica : cpu = 0.185046 (sec), leaf count = 201
\[\left \{\left \{y(x)\to \frac {1}{2} \left (\frac {1}{2} x \sqrt {a^2 x^2+4 b x^2+4 c}+\frac {2 c \log \left (\sqrt {a^2+4 b} \sqrt {a^2 x^2+4 b x^2+4 c}+a^2 x+4 b x\right )}{\sqrt {a^2+4 b}}-\frac {a x^2}{2}\right )+c_1\right \},\left \{y(x)\to \frac {1}{2} \left (-\frac {1}{2} x \left (\sqrt {x^2 \left (a^2+4 b\right )+4 c}+a x\right )-\frac {2 c \log \left (\sqrt {a^2+4 b} \sqrt {x^2 \left (a^2+4 b\right )+4 c}+a^2 x+4 b x\right )}{\sqrt {a^2+4 b}}\right )+c_1\right \}\right \}\] ✓ Maple : cpu = 0.037 (sec), leaf count = 146
\[\left \{y \left (x \right ) = -\frac {a \,x^{2}}{4}-\frac {c \ln \left (\sqrt {a^{2}+4 b}\, x +\sqrt {\left (a^{2}+4 b \right ) x^{2}+4 c}\right )}{\sqrt {a^{2}+4 b}}+c_{1}-\frac {\sqrt {\left (a^{2}+4 b \right ) x^{2}+4 c}\, x}{4}, y \left (x \right ) = -\frac {a \,x^{2}}{4}+\frac {c \ln \left (\sqrt {a^{2}+4 b}\, x +\sqrt {\left (a^{2}+4 b \right ) x^{2}+4 c}\right )}{\sqrt {a^{2}+4 b}}+c_{1}+\frac {\sqrt {\left (a^{2}+4 b \right ) x^{2}+4 c}\, x}{4}\right \}\]