\[ x y(x)^3 y'(x)+y(x)^4-x \sin (x)=0 \] ✓ Mathematica : cpu = 0.17139 (sec), leaf count = 188
\[\left \{\left \{y(x)\to -\frac {\sqrt [4]{-4 x^4 \cos (x)+16 x^3 \sin (x)+48 x^2 \cos (x)-96 x \sin (x)-96 \cos (x)+c_1}}{x}\right \},\left \{y(x)\to -\frac {i \sqrt [4]{-4 x^4 \cos (x)+16 x^3 \sin (x)+48 x^2 \cos (x)-96 x \sin (x)-96 \cos (x)+c_1}}{x}\right \},\left \{y(x)\to \frac {i \sqrt [4]{-4 x^4 \cos (x)+16 x^3 \sin (x)+48 x^2 \cos (x)-96 x \sin (x)-96 \cos (x)+c_1}}{x}\right \},\left \{y(x)\to \frac {\sqrt [4]{-4 x^4 \cos (x)+16 x^3 \sin (x)+48 x^2 \cos (x)-96 x \sin (x)-96 \cos (x)+c_1}}{x}\right \}\right \}\] ✓ Maple : cpu = 0.07 (sec), leaf count = 158
\[\left \{y \left (x \right ) = \frac {\left (c_{1}+\left (-4 x^{4}+48 x^{2}-96\right ) \cos \left (x \right )+\left (16 x^{3}-96 x \right ) \sin \left (x \right )\right )^{\frac {1}{4}}}{x}, y \left (x \right ) = \frac {i \left (c_{1}+\left (-4 x^{4}+48 x^{2}-96\right ) \cos \left (x \right )+\left (16 x^{3}-96 x \right ) \sin \left (x \right )\right )^{\frac {1}{4}}}{x}, y \left (x \right ) = -\frac {\left (c_{1}+\left (-4 x^{4}+48 x^{2}-96\right ) \cos \left (x \right )+\left (16 x^{3}-96 x \right ) \sin \left (x \right )\right )^{\frac {1}{4}}}{x}, y \left (x \right ) = -\frac {i \left (c_{1}+\left (-4 x^{4}+48 x^{2}-96\right ) \cos \left (x \right )+\left (16 x^{3}-96 x \right ) \sin \left (x \right )\right )^{\frac {1}{4}}}{x}\right \}\]