\[ \left \{x'(t)=x(t) (a (p x(t)+q y(t))+\alpha ),y'(t)=y(t) (b (p x(t)+q y(t))+\beta )\right \} \] ✗ Mathematica : cpu = 300.077 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 4.182 (sec), leaf count = 147
\[\left \{\left [\{x \left (t \right ) = 0\}, \left \{y \left (t \right ) = \frac {\beta }{c_{1} \beta \,{\mathrm e}^{-\beta t}-b q}\right \}\right ], \left [\left \{x \left (t \right ) = \mathit {ODESolStruc} \left (\textit {\_}b\left (\textit {\_a} \right ), \left [\left \{c_{1}+\left (\textit {\_}b\left (\textit {\_a} \right )^{\frac {-a -b}{a}} \left (\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )\right )-\left (a p \textit {\_}b\left (\textit {\_a} \right )+\alpha \right ) \textit {\_}b\left (\textit {\_a} \right )^{-\frac {b}{a}}\right ) {\mathrm e}^{-\frac {\left (a \beta -\alpha b \right ) \textit {\_a}}{a}}=0\right \}, \left \{\textit {\_a} =t , \textit {\_}b\left (\textit {\_a} \right )=x \left (t \right )\right \}, \left \{t =\textit {\_a} , x \left (t \right )=\textit {\_}b\left (\textit {\_a} \right )\right \}\right ]\right )\right \}, \left \{y \left (t \right ) = \frac {-a p x \left (t \right )^{2}-\alpha x \left (t \right )+\frac {d}{d t}x \left (t \right )}{a q x \left (t \right )}\right \}\right ]\right \}\]