\[ y''(x) \left (\text {f1}(x) y'(x)+\text {f2}(x) y(x)\right )+\text {f3}(x) y'(x)^2+\text {f4}(x) y(x) y'(x)+\text {f5}(x) y(x)^2=0 \] ✗ Mathematica : cpu = 303.679 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 1.169 (sec), leaf count = 88
\[\left \{y \left (x \right ) = \mathit {ODESolStruc} \left ({\mathrm e}^{c_{1}+\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}, \left [\left \{\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )=\frac {-\mathit {f1} \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (-\mathit {f2} -\mathit {f3} \right ) \textit {\_}b\left (\textit {\_a} \right )^{2}-\textit {\_}b\left (\textit {\_a} \right ) \mathit {f4} \left (\textit {\_a} \right )-\mathit {f5} \left (\textit {\_a} \right )}{\mathit {f1} \textit {\_}b\left (\textit {\_a} \right )+\mathit {f2}}\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}\right \}, \left \{x =\textit {\_a} , y \left (x \right )={\mathrm e}^{c_{1}+\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a}}\right \}\right ]\right )\right \}\]