\[ a b (y(x)-1) y(x) y''(x)-\left (y'(x)^2 ((2 a b-a-b) y(x)+(1-a) b)\right )+f(x) (y(x)-1) y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.157967 (sec), leaf count = 69
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-a \text {$\#$1}^{\frac {1}{a}} \, _2F_1\left (\frac {1}{a},1-\frac {1}{b};1+\frac {1}{a};\text {$\#$1}\right )\& \right ]\left [\int _1^x\exp \left (-\int _1^{K[3]}\frac {f(K[1])}{a b}dK[1]\right ) c_1dK[3]+c_2\right ]\right \}\right \}\] ✓ Maple : cpu = 1.322 (sec), leaf count = 46
\[\left \{c_{1} {\mathrm e}^{-\frac {f x}{a b}}-c_{2}+\int _{}^{y \left (x \right )}\frac {\textit {\_a}^{\frac {1}{a}} \left (\textit {\_a} -1\right )^{\frac {1}{b}}}{\left (\textit {\_a} -1\right ) \textit {\_a}}d \textit {\_a} = 0\right \}\]