\[ a x+y(x)^2 y''(x)+y(x) y'(x)^2=0 \] ✗ Mathematica : cpu = 22.866 (sec), leaf count = 0 , could not solve
DSolve[a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 2.007 (sec), leaf count = 117
\[\left \{-c_{2}-\frac {\sqrt {3}\, \left (\int _{}^{\frac {y \left (x \right )}{x}}\frac {3 \left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {1}{3}} \textit {\_g}^{2} \tan \left (\RootOf \left (6 c_{1}-2 \sqrt {3}\, \textit {\_Z} +6 \left (\int \frac {\left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {2}{3}} \textit {\_g}^{2}}{\textit {\_g}^{3}+a}d \textit {\_g} \right )+\ln \left (\frac {\tan ^{2}\left (\textit {\_Z} \right )+1}{\tan ^{2}\left (\textit {\_Z} \right )+2 \sqrt {3}\, \tan \left (\textit {\_Z} \right )+3}\right )\right )\right )+\sqrt {3}\, \left (\left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {1}{3}}-2\right ) \textit {\_g}^{2}}{\textit {\_g}^{3}+a}d \textit {\_g} \right )}{6}+\ln \left (x \right ) = 0\right \}\]