\[ a y(x) y'(x)^2+b y(x)+y''(x)=0 \] ✓ Mathematica : cpu = 0.524982 (sec), leaf count = 96
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[1]^2}-b}}dK[1]\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {a}}{\sqrt {e^{2 a c_1-a K[2]^2}-b}}dK[2]\& \right ][x+c_2]\right \}\right \}\] ✓ Maple : cpu = 1.342 (sec), leaf count = 70
\[\left \{-c_{2}-x +\int _{}^{y \left (x \right )}\frac {a}{\sqrt {\left (c_{1} a \,{\mathrm e}^{-\textit {\_a}^{2} a}-b \right ) a}}d \textit {\_a} = 0, -c_{2}-x +\int _{}^{y \left (x \right )}-\frac {a}{\sqrt {\left (c_{1} a \,{\mathrm e}^{-\textit {\_a}^{2} a}-b \right ) a}}d \textit {\_a} = 0\right \}\]