\[ -a x-b \sin (x)-c \cos (x)+y^{(n)}(x)+2 y^{(3)}(x)+y'(x)=0 \] ✓ Mathematica : cpu = 0.937588 (sec), leaf count = 80
\[\left \{\left \{y(x)\to \frac {1}{16} \left (8 a x^2+\cos (x) \left (b \left (2 x^2-9\right )-2 (5 c x+8 (c_4 x-c_2+c_3))\right )+\sin (x) \left (-6 b x+c \left (13-2 x^2\right )+16 (c_2 x+c_1+c_4)\right )\right )+c_5\right \}\right \}\] ✓ Maple : cpu = 0.467 (sec), leaf count = 69
\[\left \{y \left (x \right ) = \frac {a \,x^{2}}{2}+c_{5}+\frac {\left (b \,x^{2}-8 c_{2}+8 c_{3}-6 b +\left (-8 c_{4}-4 c \right ) x \right ) \cos \left (x \right )}{8}+\frac {\left (-c \,x^{2}+8 c_{1}+8 c_{4}+6 c +\left (8 c_{3}-4 b \right ) x \right ) \sin \left (x \right )}{8}\right \}\]