\[ (x-a)^3 (x-b)^3 y^{(3)}(x)-c y(x)=0 \] ✓ Mathematica : cpu = 130.128 (sec), leaf count = 165
\[\left \{\left \{y(x)\to c_1 (x-b)^2 \left (\frac {x-a}{x-b}\right )^{\text {Root}\left [-\text {$\#$1}^3+3 \text {$\#$1}^2-2 \text {$\#$1}+\frac {c}{(a-b)^3}\& ,1\right ]}+c_2 (x-b)^2 \left (\frac {x-a}{x-b}\right )^{\text {Root}\left [-\text {$\#$1}^3+3 \text {$\#$1}^2-2 \text {$\#$1}+\frac {c}{(a-b)^3}\& ,2\right ]}+c_3 (x-b)^2 \left (\frac {x-a}{x-b}\right )^{\text {Root}\left [-\text {$\#$1}^3+3 \text {$\#$1}^2-2 \text {$\#$1}+\frac {c}{(a-b)^3}\& ,3\right ]}\right \}\right \}\] ✓ Maple : cpu = 0.611 (sec), leaf count = 437
\[\left \{y \left (x \right ) = \left (c_{1} \left (a -x \right )^{\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =1\right )}{a -b}} \left (b -x \right )^{-\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =1\right )}{a -b}}+c_{2} \left (a -x \right )^{\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =2\right )}{a -b}} \left (b -x \right )^{-\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =2\right )}{a -b}}+c_{3} \left (a -x \right )^{\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =3\right )}{a -b}} \left (b -x \right )^{-\frac {\RootOf \left (\textit {\_Z}^{3}-4 a^{2} b -4 a \,b^{2}+\left (-3 a -3 b \right ) \textit {\_Z}^{2}+\left (2 a^{2}+8 a b +2 b^{2}\right ) \textit {\_Z} -c , \mathit {index} =3\right )}{a -b}}\right ) \left (-a +x \right )^{-\frac {2 b}{a -b}} \left (-b +x \right )^{\frac {2 a}{a -b}}\right \}\]