\[ y''(x)=-\frac {y(x) \left (b x^2+c x+d\right )}{a (x-1)^2 x^2} \] ✓ Mathematica : cpu = 15.271 (sec), leaf count = 413606 \[ \text {Too large to display} \] ✓ Maple : cpu = 0.162 (sec), leaf count = 299
\[\left \{y \left (x \right ) = c_{1} x^{\frac {\sqrt {a}+\sqrt {a -4 d}}{2 \sqrt {a}}} \left (x -1\right )^{\frac {\sqrt {a}-\sqrt {a -4 b -4 c -4 d}}{2 \sqrt {a}}} \hypergeom \left (\left [-\frac {-\sqrt {a}+\sqrt {a -4 b -4 c -4 d}-\sqrt {a -4 d}+\sqrt {a -4 b}}{2 \sqrt {a}}, \frac {\sqrt {a}-\sqrt {a -4 b -4 c -4 d}+\sqrt {a -4 d}+\sqrt {a -4 b}}{2 \sqrt {a}}\right ], \left [\frac {\sqrt {a}+\sqrt {a -4 d}}{\sqrt {a}}\right ], x\right )+c_{2} x^{-\frac {-\sqrt {a}+\sqrt {a -4 d}}{2 \sqrt {a}}} \left (x -1\right )^{-\frac {-\sqrt {a}+\sqrt {a -4 b -4 c -4 d}}{2 \sqrt {a}}} \hypergeom \left (\left [-\frac {-\sqrt {a}+\sqrt {a -4 b -4 c -4 d}+\sqrt {a -4 d}+\sqrt {a -4 b}}{2 \sqrt {a}}, -\frac {-\sqrt {a}+\sqrt {a -4 b -4 c -4 d}+\sqrt {a -4 d}-\sqrt {a -4 b}}{2 \sqrt {a}}\right ], \left [\frac {\sqrt {a}-\sqrt {a -4 d}}{\sqrt {a}}\right ], x\right )\right \}\]