\[ -v (v+1) x y(x)+x \left (x^2+1\right ) y''(x)+\left (2 x^2+1\right ) y'(x)=0 \] ✓ Mathematica : cpu = 0.109689 (sec), leaf count = 63
\[\left \{\left \{y(x)\to c_2 G_{2,2}^{2,0}\left (-x^2|\begin {array}{c} \frac {1-v}{2},\frac {v+2}{2} \\ 0,0 \\\end {array}\right )+c_1 \, _2F_1\left (\frac {v}{2}+\frac {1}{2},-\frac {v}{2};1;-x^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.201 (sec), leaf count = 52
\[\left \{y \left (x \right ) = c_{1} \hypergeom \left (\left [-\frac {v}{2}, \frac {v}{2}+\frac {1}{2}\right ], \left [\frac {1}{2}\right ], x^{2}+1\right )+c_{2} \sqrt {x^{2}+1}\, \hypergeom \left (\left [\frac {v}{2}+1, -\frac {v}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], x^{2}+1\right )\right \}\]