\[ y(x) \left (a \left ((-1)^n-1\right )+2 n x^2\right )-2 x \left (x^2-a\right ) y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.22301 (sec), leaf count = 252
\[\left \{\left \{y(x)\to c_1 (-1)^{\frac {1}{4} \left (-\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} x^{\frac {1}{2} \left (-\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} \, _1F_1\left (-\frac {a}{2}-\frac {n}{2}-\frac {1}{4} \sqrt {4 a^2-4 (-1)^n a+1}+\frac {1}{4};1-\frac {1}{2} \sqrt {4 a^2-4 (-1)^n a+1};x^2\right )+c_2 (-1)^{\frac {1}{4} \left (\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} x^{\frac {1}{2} \left (\sqrt {4 a^2-4 a (-1)^n+1}-2 a+1\right )} \, _1F_1\left (-\frac {a}{2}-\frac {n}{2}+\frac {1}{4} \sqrt {4 a^2-4 (-1)^n a+1}+\frac {1}{4};\frac {1}{2} \sqrt {4 a^2-4 (-1)^n a+1}+1;x^2\right )\right \}\right \}\] ✓ Maple : cpu = 0.281 (sec), leaf count = 81
\[\left \{y \left (x \right ) = \left (c_{1} \WhittakerM \left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {4 a^{2}-4 a \left (-1\right )^{n}+1}}{4}, x^{2}\right )+c_{2} \WhittakerW \left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {4 a^{2}-4 a \left (-1\right )^{n}+1}}{4}, x^{2}\right )\right ) x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}}\right \}\]