\[ y(x) (a x+b)+x^2 y''(x)+x^2 y'(x)=0 \] ✓ Mathematica : cpu = 0.0230653 (sec), leaf count = 122
\[\left \{\left \{y(x)\to c_1 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} U\left (\frac {1}{2} \left (-2 a+\sqrt {1-4 b}+1\right ),\sqrt {1-4 b}+1,x\right )+c_2 e^{\frac {1}{2} \left (\left (\sqrt {1-4 b}+1\right ) \log (x)-2 x\right )} L_{\frac {1}{2} \left (2 a-\sqrt {1-4 b}-1\right )}^{\sqrt {1-4 b}}(x)\right \}\right \}\] ✓ Maple : cpu = 0.192 (sec), leaf count = 38
\[\left \{y \left (x \right ) = \left (c_{1} \WhittakerM \left (a , \frac {\sqrt {-4 b +1}}{2}, x\right )+c_{2} \WhittakerW \left (a , \frac {\sqrt {-4 b +1}}{2}, x\right )\right ) {\mathrm e}^{-\frac {x}{2}}\right \}\]