\[ \frac {y'(x) \left (-\wp (x;a,b) \wp '(x;a,b)+\wp (x;a,b)^3-6 \wp (x;a,b)^2+\frac {a}{2}\right )}{\wp '(x;a,b)-\wp (x;a,b)^2}+\frac {y(x) \left (\wp (x;a,b)^2 (-\wp '(x;a,b))-\left (6 \wp (x;a,b)^2-\frac {a}{2}\right ) \wp (x;a,b)+\wp '(x;a,b)^2\right )}{\wp (x;a,b)^2+\wp '(x;a,b)}+y''(x)=0 \] ✗ Mathematica : cpu = 1.41828 (sec), leaf count = 0 , could not solve
DSolve[((-(WeierstrassP[x, {a, b}]*(-1/2*a + 6*WeierstrassP[x, {a, b}]^2)) - WeierstrassP[x, {a, b}]^2*WeierstrassPPrime[x, {a, b}] + WeierstrassPPrime[x, {a, b}]^2)*y[x])/(WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + ((a/2 - 6*WeierstrassP[x, {a, b}]^2 + WeierstrassP[x, {a, b}]^3 - WeierstrassP[x, {a, b}]*WeierstrassPPrime[x, {a, b}])*Derivative[1][y][x])/(-WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[\left \{y \left (x \right ) = \mathit {DESol}\left (\left \{\frac {\left (-\WeierstrassP \left (x , a , b\right )^{2} \mathcal {P}^{\prime }\left (x ;a ,b \right )+\mathcal {P}^{\prime }\left (x ;a ,b \right )^{2}-\left (6 \WeierstrassP \left (x , a , b\right )^{2}-\frac {a}{2}\right ) \WeierstrassP \left (x , a , b\right )\right ) \textit {\_Y} \left (x \right )}{\WeierstrassP \left (x , a , b\right )^{2}+\mathcal {P}^{\prime }\left (x ;a ,b \right )}+\frac {\left (-6 \WeierstrassP \left (x , a , b\right )^{2}+11 \WeierstrassP \left (x , a , b\right ) \mathcal {P}^{\prime }\left (x ;a ,b \right )+\frac {a}{2}\right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )}{\WeierstrassP \left (x , a , b\right )^{2}+\mathcal {P}^{\prime }\left (x ;a ,b \right )}+\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right \}\]