ODE No. 986

\[ y'(x)=\frac {-x^3 \log ^3(x)+3 x^2 y(x) \log ^2(x)+x^2+y(x)^3+x y(x)-3 x y(x)^2 \log (x)}{x^2} \] Mathematica : cpu = 0.117719 (sec), leaf count = 44

DSolve[Derivative[1][y][x] == (x^2 - x^3*Log[x]^3 + x*y[x] + 3*x^2*Log[x]^2*y[x] - 3*x*Log[x]*y[x]^2 + y[x]^3)/x^2,y[x],x]
 

\[\left \{\left \{y(x)\to x \log (x)-\frac {x}{\sqrt {-2 x+c_1}}\right \},\left \{y(x)\to x \log (x)+\frac {x}{\sqrt {-2 x+c_1}}\right \}\right \}\] Maple : cpu = 0.04 (sec), leaf count = 36

dsolve(diff(y(x),x) = (y(x)^3-3*x*y(x)^2*ln(x)+3*x^2*ln(x)^2*y(x)-x^3*ln(x)^3+x^2+x*y(x))/x^2,y(x))
 

\[y \left (x \right ) = -\frac {x}{\sqrt {c_{1}-2 x}}+x \ln \left (x \right )\]