ODE No. 966

\[ y'(x)=-\frac {1296 y(x)}{216 x^3-216 x^2 y(x)^4-324 x^2 y(x)^3-648 x^2 y(x)^2-648 x^2 y(x)+216 x^2-8 y(x)^{12}-36 y(x)^{11}-126 y(x)^{10}-315 y(x)^9+72 x y(x)^8-570 y(x)^8+216 x y(x)^7-846 y(x)^7+594 x y(x)^6-882 y(x)^6+1080 x y(x)^5-612 y(x)^5+1152 x y(x)^4-1944 y(x)^4+1080 x y(x)^3-1728 y(x)^3+216 x y(x)^2-2376 y(x)^2-432 x y(x)-1296 y(x)+216} \] Mathematica : cpu = 0.721135 (sec), leaf count = 292

DSolve[Derivative[1][y][x] == (-1296*y[x])/(216 + 216*x^2 + 216*x^3 - 1296*y[x] - 432*x*y[x] - 648*x^2*y[x] - 2376*y[x]^2 + 216*x*y[x]^2 - 648*x^2*y[x]^2 - 1728*y[x]^3 + 1080*x*y[x]^3 - 324*x^2*y[x]^3 - 1944*y[x]^4 + 1152*x*y[x]^4 - 216*x^2*y[x]^4 - 612*y[x]^5 + 1080*x*y[x]^5 - 882*y[x]^6 + 594*x*y[x]^6 - 846*y[x]^7 + 216*x*y[x]^7 - 570*y[x]^8 + 72*x*y[x]^8 - 315*y[x]^9 - 126*y[x]^10 - 36*y[x]^11 - 8*y[x]^12),y[x],x]
 

\[\text {Solve}\left [72 \text {RootSum}\left [-216 \text {$\#$1}^3+216 \text {$\#$1}^2 y(x)^4+324 \text {$\#$1}^2 y(x)^3+648 \text {$\#$1}^2 y(x)^2+648 \text {$\#$1}^2 y(x)-216 \text {$\#$1}^2-72 \text {$\#$1} y(x)^8-216 \text {$\#$1} y(x)^7-594 \text {$\#$1} y(x)^6-1080 \text {$\#$1} y(x)^5-1152 \text {$\#$1} y(x)^4-1080 \text {$\#$1} y(x)^3-216 \text {$\#$1} y(x)^2+432 \text {$\#$1} y(x)+8 y(x)^{12}+36 y(x)^{11}+126 y(x)^{10}+315 y(x)^9+570 y(x)^8+846 y(x)^7+882 y(x)^6+612 y(x)^5+216 y(x)^4-216 y(x)^3-216 y(x)^2-216\& ,\frac {\log (x-\text {$\#$1})}{36 \text {$\#$1}^2-24 \text {$\#$1} y(x)^4-36 \text {$\#$1} y(x)^3-72 \text {$\#$1} y(x)^2-72 \text {$\#$1} y(x)+24 \text {$\#$1}+4 y(x)^8+12 y(x)^7+33 y(x)^6+60 y(x)^5+64 y(x)^4+60 y(x)^3+12 y(x)^2-24 y(x)}\& \right ]+\log (y(x))=c_1,y(x)\right ]\] Maple : cpu = 0.599 (sec), leaf count = 50

dsolve(diff(y(x),x) = -1296*y(x)/(216-1728*y(x)^3-2376*y(x)^2-1296*y(x)+216*x^2+216*x*y(x)^2-432*x*y(x)-648*x^2*y(x)-315*y(x)^9-8*y(x)^12-36*y(x)^11-126*y(x)^10-846*y(x)^7-570*y(x)^8+72*y(x)^8*x+216*y(x)^7*x+1080*y(x)^5*x-882*y(x)^6+594*x*y(x)^6-216*x^2*y(x)^4-612*y(x)^5+1152*x*y(x)^4-648*x^2*y(x)^2-324*x^2*y(x)^3+1080*x*y(x)^3-1944*y(x)^4+216*x^3),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\RootOf \left (-\textit {\_Z} -6 \left (\int _{}^{x -\frac {{\mathrm e}^{4 \textit {\_Z}}}{3}-\frac {{\mathrm e}^{3 \textit {\_Z}}}{2}-{\mathrm e}^{2 \textit {\_Z}}-{\mathrm e}^{\textit {\_Z}}}\frac {1}{\textit {\_a}^{3}+\textit {\_a}^{2}+1}d \textit {\_a} \right )+c_{1}\right )}\]