ODE No. 921

\[ y'(x)=y(x) \left (\text {$\_$F1}(x)+\frac {\log (y(x))}{x}-\frac {\log (y(x))}{x \log (x)}\right ) \] Mathematica : cpu = 0.245942 (sec), leaf count = 92

DSolve[Derivative[1][y][x] == y[x]*(Log[y[x]]/x - Log[y[x]]/(x*Log[x]) + _F1[x]),y[x],x]
 

\[\text {Solve}\left [\int _1^x\left (\frac {\log (y(x))-\log (K[1]) \log (y(x))}{K[1]^2}-\frac {\log (K[1]) \text {$\_$F1}(K[1])}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (\frac {\log (x)}{x K[2]}-\int _1^x\frac {\frac {1}{K[2]}-\frac {\log (K[1])}{K[2]}}{K[1]^2}dK[1]\right )dK[2]=c_1,y(x)\right ]\] Maple : cpu = 0.208 (sec), leaf count = 30

dsolve(diff(y(x),x) = -(-1/x*ln(y(x))+1/x/ln(x)*ln(y(x))-_F1(x))*y(x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {x c_{1}}{\ln \left (x \right )}} {\mathrm e}^{\frac {x \left (\int \frac {\textit {\_F1} \left (x \right ) \ln \left (x \right )}{x}d x \right )}{\ln \left (x \right )}}\]