ODE No. 906

y(x)=x(x2+y(x)2+1)x6+3x4y(x)2+3x2y(x)4x2y(x)+y(x)6y(x)3y(x) Mathematica : cpu = 0.137126 (sec), leaf count = 326

DSolve[Derivative[1][y][x] == (x*(1 + x^2 + y[x]^2))/(x^6 - y[x] - x^2*y[x] + 3*x^4*y[x]^2 - y[x]^3 + 3*x^2*y[x]^4 + y[x]^6),y[x],x]
 

{{y(x)Root[4#154#14c1+8#13x2+#12(28c1x2)+4#1x44c1x4+2x2+1&,1]},{y(x)Root[4#154#14c1+8#13x2+#12(28c1x2)+4#1x44c1x4+2x2+1&,2]},{y(x)Root[4#154#14c1+8#13x2+#12(28c1x2)+4#1x44c1x4+2x2+1&,3]},{y(x)Root[4#154#14c1+8#13x2+#12(28c1x2)+4#1x44c1x4+2x2+1&,4]},{y(x)Root[4#154#14c1+8#13x2+#12(28c1x2)+4#1x44c1x4+2x2+1&,5]}} Maple : cpu = 0.284 (sec), leaf count = 37

dsolve(diff(y(x),x) = x*(x^2+y(x)^2+1)/(-y(x)^3-x^2*y(x)-y(x)+y(x)^6+3*x^2*y(x)^4+3*x^4*y(x)^2+x^6),y(x))
 

14(y(x)2+x2)212y(x)2+2x2y(x)+c1=0