\[ y'(x)=-\frac {1}{216} \sqrt {x} \left (-108 x^{3/2}+x^9-18 x^6 y(x)-6 x^6+108 x^3 y(x)^2+72 x^3 y(x)-216 y(x)^3-216 y(x)^2-216\right ) \] ✓ Mathematica : cpu = 0.252304 (sec), leaf count = 119
DSolve[Derivative[1][y][x] == -1/216*(Sqrt[x]*(-216 - 108*x^(3/2) - 6*x^6 + x^9 + 72*x^3*y[x] - 18*x^6*y[x] - 216*y[x]^2 + 108*x^3*y[x]^2 - 216*y[x]^3)),y[x],x]
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {1}{2} \left (2 \sqrt {x}-x^{7/2}\right )+3 \sqrt {x} y(x)}{\sqrt [3]{29} \sqrt [3]{x^{3/2}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {2}{27} 29^{2/3} \sqrt {x} \left (x^{3/2}\right )^{2/3}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.056 (sec), leaf count = 41
dsolve(diff(y(x),x) = -1/216*(-108*x^(3/2)-216-216*y(x)^2+72*x^3*y(x)-6*x^6-216*y(x)^3+108*x^3*y(x)^2-18*y(x)*x^6+x^9)*x^(1/2),y(x))
\[y \left (x \right ) = \frac {x^{3}}{6}-\frac {1}{3}+\frac {29 \RootOf \left (2 x^{\frac {3}{2}}-243 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+9 c_{1}\right )}{9}\]