ODE No. 838

\[ y'(x)=\frac {\frac {8 x^{7/2}}{5}+\frac {4 x^6}{25}-\frac {4}{5} x^3 y(x)+\frac {6 x^3}{5}-4 \sqrt {x} y(x)+y(x)^2+4 x+\sqrt {x}}{x} \] Mathematica : cpu = 0.168017 (sec), leaf count = 31

DSolve[Derivative[1][y][x] == (Sqrt[x] + 4*x + (6*x^3)/5 + (8*x^(7/2))/5 + (4*x^6)/25 - 4*Sqrt[x]*y[x] - (4*x^3*y[x])/5 + y[x]^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {2}{5} \sqrt {x} \left (x^{5/2}+5\right )+\frac {1}{-\log (x)+c_1}\right \}\right \}\] Maple : cpu = 0.108 (sec), leaf count = 25

dsolve(diff(y(x),x) = 1/25*(30*x^3+25*x^(1/2)+25*y(x)^2-20*x^3*y(x)-100*y(x)*x^(1/2)+4*x^6+40*x^(7/2)+100*x)/x,y(x))
 

\[y \left (x \right ) = \frac {2 \left (x^{2}+\frac {5}{\sqrt {x}}\right ) x}{5}+\frac {1}{c_{1}-\ln \left (x \right )}\]