ODE No. 794

\[ y'(x)=\frac {y(x)}{x \left (x^3 y(x)^4+x^2 y(x)^3+y(x)-1\right )} \] Mathematica : cpu = 0.207418 (sec), leaf count = 67

DSolve[Derivative[1][y][x] == y[x]/(x*(-1 + y[x] + x^2*y[x]^3 + x^3*y[x]^4)),y[x],x]
 

\[\text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3 y(x)^3+\text {$\#$1}^2 y(x)^2+1\& ,\frac {\text {$\#$1} y(x) \log (x-\text {$\#$1})+\log (x-\text {$\#$1})}{3 \text {$\#$1} y(x)+2}\& \right ]+y(x)-\log (x)=c_1,y(x)\right ]\] Maple : cpu = 0.543 (sec), leaf count = 32

dsolve(diff(y(x),x) = y(x)/x/(-1+y(x)+x^2*y(x)^3+y(x)^4*x^3),y(x))
 

\[-y \left (x \right )+\int _{}^{x y \left (x \right )}\frac {1}{\textit {\_a} \left (\textit {\_a}^{3}+\textit {\_a}^{2}+1\right )}d \textit {\_a} -c_{1} = 0\]