[next] [prev] [prev-tail] [tail] [up]
y′(x)=x(2x4−2x2y(x)+x2−x−1)(x+1)(x2−y(x)) ✓ Mathematica : cpu = 23.4919 (sec), leaf count = 488
DSolve[Derivative[1][y][x] == (x*(-1 - x + x^2 + 2*x^4 - 2*x^2*y[x]))/((1 + x)*(x^2 - y[x])),y[x],x]
Solve[(2−x(x2−x−1)(2x2−2y(x)+3)x3(x2−x−1)33(x2−y(x)))(x(x2−x−1)(2x2−2y(x)+3)x3(x2−x−1)33(x2−y(x))+4)((1−x(x2−x−1)(2x2−2y(x)+3)2x3(x2−x−1)33(x2−y(x)))log(2−x(x2−x−1)(2x2−2y(x)+3)x3(x2−x−1)33(x2−y(x))23)+(x(x2−x−1)(2x2−2y(x)+3)2x3(x2−x−1)33(x2−y(x))−1)log(x(x2−x−1)(2x2−2y(x)+3)x3(x2−x−1)33(x2−y(x))+423)−3)1823(−(2x2−2y(x)+3)38(x2−y(x))3+3x(x2−x−1)(2x2−2y(x)+3)2x3(x2−x−1)33(x2−y(x))−2)=4 22/3(x3(x2−x−1)3)2/3(x(x2−3x+3)−3log(x+1))27x2(−x2+x+1)2+c1,y(x)] ✓ Maple : cpu = 0.994 (sec), leaf count = 191
dsolve(diff(y(x),x) = 1/(x^2-y(x))*x*(-x-1+x^2-2*x^2*y(x)+2*x^4)/(1+x),y(x))
y(x)=4x2eRootOf(8x3e_Z−24x2e_Z−36x3+6ln(2e_Z−9(1+x)4)e_Z+18c1e_Z−6_Ze_Z+24e_Zx+108x2−27ln(2e_Z−9(1+x)4)−81c1+27_Z−108x+27)−18x2−94eRootOf(8x3e_Z−24x2e_Z−36x3+6ln(2e_Z−9(1+x)4)e_Z+18c1e_Z−6_Ze_Z+24e_Zx+108x2−27ln(2e_Z−9(1+x)4)−81c1+27_Z−108x+27)−18
[next] [prev] [prev-tail] [front] [up]