ODE No. 785

\[ y'(x)=\frac {x^2 \sinh (x)+2 x y(x) \sinh (x)+y(x)^2 \sinh (x)-\log (x)+\sinh (x)}{\log (x)} \] Mathematica : cpu = 7.94874 (sec), leaf count = 29

DSolve[Derivative[1][y][x] == (-Log[x] + Sinh[x] + x^2*Sinh[x] + 2*x*Sinh[x]*y[x] + Sinh[x]*y[x]^2)/Log[x],y[x],x]
 

\[\left \{\left \{y(x)\to -x+\tan \left (\int _1^x\frac {\sinh (K[5])}{\log (K[5])}dK[5]+c_1\right )\right \}\right \}\] Maple : cpu = 58.379 (sec), leaf count = 24

dsolve(diff(y(x),x) = -(ln(x)-sinh(x)*x^2-2*sinh(x)*x*y(x)-sinh(x)-sinh(x)*y(x)^2)/ln(x),y(x))
 

\[y \left (x \right ) = -x -\tan \left (c_{1}-\left (\int \frac {\sinh \left (x \right )}{\ln \left (x \right )}d x \right )\right )\]