ODE No. 780

\[ y'(x)=\frac {x \sqrt {x^2+y(x)^2}+x y(x)+y(x)}{x (x+1)} \] Mathematica : cpu = 0.166202 (sec), leaf count = 15

DSolve[Derivative[1][y][x] == (y[x] + x*y[x] + x*Sqrt[x^2 + y[x]^2])/(x*(1 + x)),y[x],x]
 

\[\{\{y(x)\to x \sinh (\log (x+1)+c_1)\}\}\] Maple : cpu = 0.662 (sec), leaf count = 27

dsolve(diff(y(x),x) = (x*y(x)+y(x)+x*(y(x)^2+x^2)^(1/2))/x/(1+x),y(x))
 

\[c_{1}+\frac {\sqrt {y \left (x \right )^{2}+x^{2}}+y \left (x \right )}{x \left (1+x \right )} = 0\]